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Abstract. We prove that the Calogero—Sutherland model with reflections gtig model)
possesses a property of duality relating the eigenfunctions of two Hamiltonians with different
coupling constants. We obtain a generating function for their polynomial eigenfunctions, the
generalized Jacobi polynomials. The symmetry of the wavefunctions for certain particular cases
(associated with the root systems of the classical Lie gr@ypsCy and Dy) is also discussed.

1. Introduction

During the last few years a lot of work has been devoted to the study of the Calogero—
Sutherland Hamiltonian because of its relation to fractional statistics in one dimension, to
the random matrix theory, etc. The model originally proposed by Sutherland [1] describes
particles moving on a circle, with an interaction proportional to the inverse square of the
chord distance and with periodic boundary conditions. This Hamiltonian will be referred

to as the periodic Calogero—Sutherland Hamiltonian. This model is exactly solvable and its
wavefunctions, the Jack polynomials, have been extensively studied [2, 3].

A new family of models of the Calogero—Sutherland type was proposed in [4], describing
particles on a semicircle, interacting with one another and with the boundaries. We call them
Calogero—Sutherland models with reflections; several types are associated with several types
of root systems of classical Lie algebras. These models are also exactly solvable. Some
properties of their polynomial eigenfunction, the Macdonald polynomials, were studied in
[5]. The spectrum and the eigenfunctions of these Hamiltonians were used in [6] in order
to obtain the exact solution of a class of long-range interacting spin chains with boundaries.

These models are remarkably similar to the periodic one, but there are additional
complications related to the loss of the translational invariance. One of the key properties of
the periodic model is the duality which permits relating the wavefunctions corresponding to
two different values of the coupling constant [2, 3, 7]. In this paper we prove the existence
of a similar duality property for the Calogero—Sutherland Hamiltonian with reflections. The
initial motivation of this work was in obtaining the correlation functions of the Calogero—
Sutherland models with reflections.

The plan of the paper is the following: the next section is devoted to the presentation
of the model, in section 3 we present a method for deriving the polynomial eigenfunctions
and in the section 4 we emphasize the connection between the eigenfunctions of these

1 Present address: Institufirf Theoretische Physik, Univeraitzu Koln, Zulpicher strasse 77, D-50937,0k,
Germany.

0305-4470/97/124215+11$19.5@¢) 1997 IOP Publishing Ltd 4215



4216 D Serban

Hamiltonians and the Jacobi functions. Section 5 is devoted to the proof of the duality
property. In section 6 we use this property in order to derive an expansion formula for the
kernel which intertwines between the two dual models.

2. The model

Following [4, 5], a Hamiltonian of Calogero—Sutherland (CS) type can be defined for each
root system of a classical Lie algebra. Létdenote onN-dimensional vector space with

an orthonormal basi&;, ..., ey} and letR = {«} be a root system iV, with R, the set

of positive roots. Le® denote the vectofds, ..., 0y) andé - « its scalar product with the
vectora. The generalized CS Hamiltonian is

X 02 8a
= ; 362 +o§+ Sirf(0 - a/2) @1
where g, is constant on each orbit of the Weyl group, i.e. it has the same value for the
roots of the same length.

The periodic model [1] corresponds with the root system of tyipe ;. It describes
interacting particles on a circle, with the positions specified by ar@jlesnging from 0 to
27 and with periodic boundary conditions.

The reflection models are associated with the four infinite series of root syddlams
By, Cy and BCy. A list of the main characteristics of these series of root systems is given
in appendix A.

The most general Hamiltonian is the one associated withnthrereduced(i.e. that
includes roots which are proportional, asand 2r) BCy root system; the others can be
obtained from it by setting the coupling constants to some special values.

The BCy Hamiltonian describesv particles on a semicircle, with positions specified
by the angles & 6y, ...,0y < 7:

N 2 N Y ' '
H==Y " +66-D ) [sin2<9’ 291) +sin2(9' ;%)}
i=1 i i#j=1

N
. 0; .
+ Z [61(262 +c¢1— 1)sin? >+ 4cy(cp — 1) sin 29,} ) (2.2)
i=1

This Hamiltonian has three independent coupling constéints and c¢,, corresponding to
the roots of length 2, 1 and 4, respectively.

Compared with the periodic version, the potential part of this Hamiltonian contains a
new two-body term corresponding to the interaction between paitieled the ‘image’
of the particle;j through the reflectio®; — —6,. Using the relation Siff x 4+ cos 2x =
4 sin~2(2x), the one-body part of the potential can be separated into couplings of the particles
to the two boundarieg@ = 0, =, with independent coupling constants relatedtoc,.

The other cases are obtained by setting to zero one (or both) of the coupling constants
C1, C2.

By: c2=0 Cy:c1=0 Dy c1=c3=0. (2.3)

The symmetry to be imposed to the wavefunctions depends on the root system we consider.
The ground-state wavefunction of this Hamiltonian is [6]

N

A0 =[] [sin” % sinf2 9,} I1 [sinﬁ <9i ;91> sinf (9" ;efﬂ : (2.4)

i=1 i<j
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Note that this ground state is well defined fércy, ¢, > —1/2.
It is convenient to define a gauge transformed Hamiltoniafi{by A(8)*HA(0)— Eq,
with Eg = Z,.N:l(ﬂ(N — i) + ¢1/2 + c2)? the ground-state energy &f. We obtain

N 0; — 0; 0; +0; N 0;
2 1 i i X
H=-— E - — B E [ctg(2 ’> +ctg( 5 ’)} 0; — E [clctg2 +2czctge,} 0;.

i—1 ij i=1

(2.5)

Let us mention that higher-order conserved quantities exist for this model. They are
generated by the quantum determinant of the monodromy matrix obeying the reflection
equation [8]. Their construction parallels that of the conserved quantities of the periodic
model [9]. The monodromy matrix for the spin chains associated with this model was
constructed in [6].

3. Symmetry of the eigenstates o

In this section we present the basis of the polynomials in the variak}hlgé = etl;/2
in which the Hamiltonian¥ is triangular [5]. This basis can serve for determining the
eigenvalues and for finding the eigenfunctions.

We emphasize that different symmetries can be assigned to these eigenfunctions,
depending on the values of the coupling constantg,. These symmetries can be best
understood in terms of root systems [5], as invariances under transformations defined by the
Weyl group. The wavefunctions are naturally indexed by the dominant weights of the root
systemsBCy (or Dy, By, Cy for the particular values of the coupling constants mentioned
in (2.3)).

We start this section with a brief review (for more details see, for example, [10]) of
some of the notions related to the root systems.

Let V be anN-dimensional vector space with an orthonormal bésis. . ., ey} anda
a root system ir¥/. Let X be the reunion of hyperplanes orthogonal to one of the r@ots
A chamber is a connected componentof X. Let («g, ..., o) be the basis corresponding
to a chambelC ((«;, x) > 0 for x € C) andal.V = 20;/(a;, ;). The vectorsy; with the
property (¢, @;) = §&;; are called the fundamental weights. The dominant weights are
defined as being linear combinations of the fundamental weights with non-negative integer
coefficients,A = Zﬁzl kiw;. When! = N, as in the cases considered here, the dominant
weights can equally be characterized by the set of coordinates., Ay of A with respect
to the the orthogonal system, ..., ex; A; = (X, €;).

We note that the Weyl group is the group generated by the reflections with respect to
the hyperplanes orthogonal to the roots.

The main characteristics of the root systems we consider, as well as the allowed values
of A1, ..., Ay, are presented in appendix A.

A partial ordering can be defined for the dominant weighits- u if A, u are dominant
weights andu = A — @ with « a positive root.

Consider now the Hamiltoniak written in the variableg = €

N N
H= Z(Ziazi)z + B Z(wij + w;;)zi0; + Z(Clwio + 2cow;i)z;0;,  (3.1)
i=1 i#j i=1

with wi; = (zi 4+ 2))/ (@i — 2), Wi = @i +2; /@ — 27 andwio = (2 + /@ — D).
It is possible to construct eigenfunctions & polynomial in the variables:™* = e*i%/2
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and symmetric under the transformations defined by the Weyl group. To achieve that, start
from the monomials

.
and define the symmetrized monomials

m, = sz(m - s(xm (3.2)

seW

where the sum is over the elements of the Weyl grédupeach distinct monomial occurring
only once, and. denotes a dominant weight of the root system under consideration. The
Hamiltonian’ is triangular on the basis of symmetrized monomiajs

’}'(I’l’l)L = E)J’l’l)L + ZC}MMWI“.

H<Ai

One can check that there are no poles generated bwithéactors. The symmetry o,
ensures that these poles disappear and lower order monomials are generated. The typical
example is

21+ 22

21— 22
wheren; — ny is a positive integer. The terms containingj, w;;, w;o andw;; generate a
lower-order symmetric monomial of the type,_, with o equal toe; — ¢;, ¢; + ¢;, ¢; and
2e¢;, respectively.

As H is triangular, the eigenvaluds, are easily derived

1_np+1
(z1'25° — 2%25") = 21 22 + 220 2y T 4 2102t

N
Ep =Y % +2B(N — i)+ c1 + 2c2). (3.3)
i=1
The restrictions on the values of the momektacoming from the fact that is a dominant
weight, are discussed in the appendices.

4. Jacobi polynomials

The polynomial eigenfunction of{ with BCy symmetry already considered are also
symmetric polynomials in the variablas = cosd;. They are multivariate generalizations
of the Jacobi polynomials [11].

Let us start with the simplest casggs = 0 or 1, when the Hamiltonian (2.2)
decouples to a sum of one-particle terHs. After a gauge transfornp () Hip~1(0),
with ¢(0) = sint(8/2) sin? #, we obtain the one-particle Hamiltonian

2

L (4.1)

do

The eigenfunctions of{; satisfy the hypergeometric differential equation in the variable
X = C0osf

y )&
c1 ctg + 2¢, ctgh

d?y dy
2
1—x )@ —[e1 4 (c1+ 2¢2 + 1)x]a +nm+c1+ 2c)y =0. (4.2)
The Jacobi polynomial®“? (x), with
a=c1+c2—1/2 b=c,—1/2 (4.3)

andrn a non-negative integer, are solutions of this equation. We willaygeto index the
wavefunctions and continue to usg ¢, as coupling constants in the Hamiltonian.
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The Jacobi polynomials form a basis for the functions defined on the intendall],
orthogonal with respect to the scalar product

1
(F (), g()) = / A0 =D f ). (4.4)

The second (non-polynomial) solution of (4.2) is given by the Jacobi’s function of the second
kind, 0%’ (x). For a detailed description of the Jacobi polynomials and Jacobi functions
see [12]. We retain the following expansion property

1y - “"p*-D~*

5 . (4.5)

o0
DR (0 0 () =
n=0

whereh(@?) is the norm of the Jacobi polynomials with respect to the scalar product (4.4)
andx = cosf andy = cos¢.

The Jacobi polynomials play the same role for 1€y model as the power function$
do for the periodic model. In particular, bosonic (fermionic) wavefunctions can be obtained
by symmetrization (antisymmetrization) of products of Jacobi polynomials

TP, (Costy, ..., costy: 0) = dy(0,a.b) Y P (COSHy,) ... Pe" (COSH,, )

O'ESN

(4.6)
and respectively

det( P}, (cost;))
[1;-; sin(® — 6)/2) sin((0; + 0;)/2)

whered, (8, a, b) are normalization constants to be fixed later.

The functions defined by the relation (4.7) are analogous to the Schur polynomials. In
the particular case; = 0, c; = 1 (ora = b = 1/2) they are, up to a normalization constant,
the characters of the symplectic group [13].

For a generic value off, Lassalle [11] showed that there are eigenfunctiong<{of
uniques up to a normalization, which have a triangular expansion on the Jack polynomials

TP ) =) capduxi B) (4.8)

HEA

TP, (coshy, ... costy: 1) = dy(1, a, b) (4.7)

wherep € A meansu; < A; for all i. They were named generalized Jacobi polynomials.
We choose their normalization such thaj = 1. Here we have used a result of [14],
section 3, to relate the Jack polynomials in the variables cosf to the ones in the
variables siff/2 = (1 — x)/2 used in [11].

A method to express these polynomials in terms of Jack polynomials (associated with
the Ay_; root systems) was also proposed in [15], using a bosonic representation of the
Calogero—Sutherland Hamiltonian.

5. Duality

It was proven by Macdonald [2] and by Gaudin [7] that the eigenfunctions of the periodic
model for two different coupling constantg @nd 1/8) are in correspondence. We show
that a similar property holds for thB8Cy model. Since the method of [2] is difficult to
parallel in theBCy case, we employ the method proposed by Gaudin.
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Consider two sets of independent variabfes= {6;,,i = 1, N} and¢. = {¢,,,m =
1, M} and the kernel

o . Qi_ m . 91’ m
KNM(Q.;qb.):l_[l_[sm< 2¢ >sm( +2¢ ) (5.1)

m=1i=1

This kernel intertwines between the Hamiltoni&g (0.; B, c1, c2) andHy (¢.; 1/8, ¢1, C2)
— B Y HN(0.: B, c1.c2) — BMN(2N — 1)/2 — MN (c1 + 2c2)| Ky (0-: ¢.)
= BY[Huy(p.; 1/B. 1. ¢2) — BINM@2M — 1)/2

—MN(C1+ 26)] Km0 ¢.) (5.2)
where the dual value& andc, are defined by
c1=c1/B C2=(2c2— B +1)/28. (5.3)

The proof uses repeatedly the identity etcigy + ctgy ctgz + ctgz ctgx = 1 for angles
satisfyingx + y +z = 0.

Let us take first¥ = 1 and evaluate the action of the kinetic operai@j= )", 3> on
Ky = Kn1

1] (G- 6+

N 1 9,'— 9i
892KN=|:—2+Zthg( 2¢)ctg< er(b)}KN. (5.5)

Using the property ctgctgy + ctgy ctgz + ctgz ctgx = 1 for the anglesc = (6, — ¢)/2,
y =—(6; +¢)/2 andz = ¢, we obtain

ctg(ei ;¢> ctg(ei J2r¢> Ky = (—2ctggpdy — DKy (5.6)
so the kinetic term is
32Ky = —(N + ctgpds) K. (5.7)

The one-body part of the potential in the variabfesan be transformed into a derivative
acting on the variable

- Z <c1 ctg% + 2¢5 ctg@,) 0, Ky = |:<c1 ctg% + 2¢5 ctgqb) 0 +c1+ 26‘2:| Ky. (5.8)

The two-body part of the potential in the variablegeconstitutes the kinetic part of the
Hamiltonian in the variable

6 — 0; 6; + 6;
—ﬁZ[Ctg( 2]>(39,-—30,)+Ctg( ;’)(ae,.+ae,.)}KN

i<j

=BN(N — 1)Ky — g > (CisCis + CiCj = Ci_Cjy — Ci1.Ci2) Ky

i<j

2
— BN(N — DKy + i[(Z(a - cm) DICES ci+)2]KN

:ﬁ[N (N—i)+8§+§ctg<9i;¢>ctg<9i;¢)] Ky (5.9
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whereC;+ = ctg((6; £ ¢)/2). Using (5.7), (5.8) and (5.9) we obtain

H@; B,c1,c2)Ky =8 [8§ + (51 ctg% + 26, ctgqb) 84 Ky
+(BN?+ (c1+2c — B+ DN)Ky. (5.10)

The right-hand side of this equation is, up to a constant, the Hamiltonian for one patrticle
of coordinatep, with the new coupling constans = ¢;/8 andc, = (2c2 — B8+ 1)/28.

Let us now takeM variables¢, M > 1 and Kyy(01,...,0N;¢1,...,0Mu) =
]_[f‘il Ky (@01, ...,0y;¢;). The potential part of the Hamiltoniai.(9; B, c1, ¢») is a first-
order derivative, so its action on the kerid€\l (41, . . ., ¢u) is additive. The second-order
derivatives in the kinetic energy operator generate crossed terms which correspond to the
two-body terms of the Hamiltonian in the variables ..., ¢u:

N

M 1/ 2 M
ZKym = Z [ ey + 4(Z(Cim— + Cim+)) 2 Z(Cizm_ + Ci2m+)i|KNM
i=1 m=1 m=1

NM 1 O —bm , O +
=|-— 4= t t
[ +2 ) ctg L

+Y <ctg¢m ;d’” +ctg¢'" erd’”)a%]KNM. (5.11)
m#n

Here we have used a calculation of the same type as in (5.9), but involving thernndéx
Cim+ = Ctg((6; = ¢,,)/2) instead of the index. The last term in (5.11) is proportional to
the two-body interaction in variables.

The full result is obtained by collecting the partial results in (5.9), (5.6) (summed over
the M variablesg,,) and (5.11):

Hy O B, c1, ) Knm (05 ¢.) = [—BHM($;1/B, C1,¢2) + BUN(N — 1)
+NM? + MN(c1+ 2¢2)]Kyu(6.; ¢.). (5.12)

This is equivalent to the result announced in equation (5.2). In the next section, this property
will be used in order to obtain the expansionkté.; ¢.) in terms of the eigenfunctions of
Hn @O B, c1, c2) andHy (¢.; 1/B, C1, C2).

Using a similar method, we can derive another result whose periodic analogue is
well known [2,3]. It concerns the expansion & #(6.;¢.) on the eigenfunctions of
H(®; B, c1, c2)

[Hy (0. B, c1, c2) — Har (9. B, —c1. —ca + BIKyhy (0.1 )
= —[B2PMN(M — N +1) — BMN(c1+ 2c2)]K 5 (0.5 ¢.). (5.13)

We can further transform this expression by noting the following property
Y @I Hu (9. B cr eV (@) = Hu(d; B, —c1 —c2+ 1) — C1 (5.14)

wherey (¢.) = M, (sin2(¢; /2) sin 221 ¢,y and C1 = M (c1+ 2c2 — 1)(B(M — 1) 4 1).
This allows us to rewrite (5.13) as

[Hn(@0.; B, c1,¢2) —Hu(d; B.ocr,co— B+ 1)+ Cz]l/f(¢-)K1;f4(9-; ¢.)=0 (5.15)
where the constant

Co=B2MN(M — N + 1) — (c1 + 2c2) BMN + M(c1 + 2c2 — 28 + 1)(B(M — 1) + 1).
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6. Expansion formula for Kyw(8.; ¢.)

The kernel (5.1) is a polynomial in both sets of variabjes= cosd; and w,, = cosg,,

M N o . M N
Kyu®:0)=]] Hsin(g’ 2¢"’) sin(e' +2¢'"> =2"TT[[0i —ww-  (6.2)

m=1i=1 m=1i=1

It plays the role of a generating function for the generalized Jacobi polynomials. Using
equation (5.2) we prove the following property, similar to the dual expansion of the Jack
polynomials [2, 3]

Kyu(@:¢) =2V 3 (~)H7P (5. )T w1 1/8) (6.2)
A

where
a=c1+co—1/2 b=cp—1/2 i=@-p+1/8 b=®m-B+1/B

and the symbok denotes the partition with parfs = N — 1},_, . ,, where.’ denotes the
partition conjugate ta..

Let us prove this relation. Calli,(w.; 8, a, b) the coefficients of the expansion of
Kyu(0.; ¢.) on eigenfunctions of{y (6.; 8, c1, ¢2),

Kym(©05¢.) =23 A, w; B,a, )T (v.5 B). (6.3)
A

It follows from equation (5.2) that they are eigenfunctions Hfy(¢.; 1/8. ¢1, ¢2),
corresponding to the same eigenvalue \ﬁf””(w.;l/ﬂ). As the energy levels can
be degenerate, we still have to prove that thesgw.; B, a,b) are proportional to
j;“‘b)(w.; 1/8) and to determine the proportionality constant. To prove this one can use the
duality property of the Jack polynomial and exploit their relation to the generalized Jacobi
polynomials (4.8).

Expression (6.1) can be expanded on the Jack polynomials [3]

Kyu©@:0) =273 ()M 1 (y.s Bz (w. 1/) (6.4)
s

where we have used the relation between the Jack polynomials with argumeants$ with
argumentsy !

M
Jiw; 1/8) = [ [ wh Juw™; 1/8).
m=1

This property can easily be verified using the triangularity Jgfy; g) in the basis of
symmetric monomials:;, and the fact that boths sides are eigenfunctions of the periodic
Calogero—Sutherland corresponding to the same eigenvalue.

In equation (6.3) we can expand the generalized Jacobi polynomials on the Jack
polynomials, to obtain

Kym©:¢)=2""">"Aw.; B.a, b)Y crulu(yi ) (6.5)
s HCA

whereu C A meansy; < A; for all i. From the relation (6.4) and the orthogonality of Jack

polynomials, we have

Ji(w; 1/B) = (=" "¢, Ar(w.; B.a. b). (6.6)

A
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Inverting this expansion we obtain
Avw.; Boa, by =Y (=DM}, Ji(w.; 1/B) (6.7)
ASh
with ¢, = 1. As the generalized Jacobi polynomiaT%é”;)(w.; 1/p) are uniquely defined
as being eigenfunctions of the Hamiltoni&ty, (¢.; 1/8, ¢1, ¢2) which is triangular in the
basis of Jack polynomials and with the coefficiet = 1, we conclude that
A Boa.b) = ()P TP (s 1/p)

which proves (6.2). Note that the expansion in (6.2) contains just a finite number of terms,
corresponding to partitions included in the partition/”" .

The equations (5.13) and (5.15) can also be related to expansion relations for
Kb ©.:4.) and y(p)Kyh (6.:¢.), probably involving generalized hypergeometric
functions which are not polynomials. The simplest case of (5.1B)4sN = M = 1, when
the associate expansion relation is the expansion property of the Jacobi functions (4.5).
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Appendix A. Root systems
The main characteristics of the root systemg, By, Cy and BCy are the following.
(i) The Dy root system.The positive roots are
e —ej,e t+e 1<i<j<N.
The fundamental weights are
wi=e1+---+e 1<i<N-2
dy1=3(e1+ - +ex_o+ev_2—ey)
oy =3(e1+ - +ey2+en—a+en).
The dominant weights oDy are indexed by.; > --- > |Ay| > 0 all integers or all half-
integers.Ay can be positive or negative. The action of the Weyl group.pis generated
by the permutations;;A; = ; and bys;;jA; = —A;.
(i) TheCy root system.The positive roots are
e —ej, ¢ +ej 1<i<j<N 2¢; A<i<N).
The fundamental weights are
(I)i=€1+-~-+€i 1<1<N

and the dominant weights are characterizedipy> --- > Ay > 0 a set of positive (or
zero) integers. The Weyl group contains, beside the permutatipasds;;, the reflections
si(Ai) = —A4.

(i) The By root system.The positive roots are

e —ej, ¢ +e 1<i<j<N e 1

N
N
=2
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The fundamental weights are
W, =e+---+e 1<i<N-1
oy =3(e1+ - +ey1+ey)

and the dominant weights are characterizedihy> --- > Ay > 0 all integers or all
half-integers. The Weyl group is that 6fy.
(iv) The BCy root systemlts positive roots are

e —ej, ej+e 1<i<j<N e, 2¢; 1<i<N.

The Weyl group and the dominant weights are thos€ pf

Appendix B. Some examples of eigenfunctions

In this appendix we give as an example some eigenvectots &f N = 2. These examples
illustrate the ‘selection rules’ of the previous appendix, imposed by the different symmetries
on the momenta,;. The following remarks are valid for any:

—polynomials labelled by half-integer weights (all € Z + 1/2) are allowed only for the

By and Dy cases

—for Dy, Ay # 0, the levels are doubly degeneraig,

----- AN-1,AN s AN—1,—AN
BC,
4cy
Jio=myo+ R S 2szo,o
2c 4c2 + 4B(1+ c1 4 2¢2)
Jii=my1+ 711111,0 + 1 P ! 2 mo,0 (B1)
1+c1+2c A4+ B+c14+2c2)(L+c1+ 2¢2)
Co(c1=0)
Pro=mypo
4c? 4+ 4B8(1+ 2cp)
Pii=my1+ 1 m B2
M A B+ 20T+ 2¢p) 0 (B2)
By(co =0)
Pip1p =mypa
1
Pio= —_—
1,0 =m0+ 1426+ Clmg,o
48 + 6c1
P. =m +——m B3
3/2,1/2 3212F 5+ o1t 28 1/2,1/2 (B3)
Dy(c1=c2=0)
Pijpv1/20 =myp 1172
Pro=myg
Prii= S
1,41 = mM1+1 + B+ 1m0.o
P, + 72}6 (B4)
=m m .
3/2,41/2 3/2,41/2 B+ 1/2,71/2

The symmetric monomials;,, ;, associated with each type of symmetry were defined in
(3.2).

Unlike in the case of Jack polynomials, there isrrdependence of the coefficients of
n.
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