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Some properties of the Calogero–Sutherland model with
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Commissariat̀a l’Énergie Atomique, CE Saclay, 91191 Gif-sur-Yvette, France
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Abstract. We prove that the Calogero–Sutherland model with reflections (theBCN model)
possesses a property of duality relating the eigenfunctions of two Hamiltonians with different
coupling constants. We obtain a generating function for their polynomial eigenfunctions, the
generalized Jacobi polynomials. The symmetry of the wavefunctions for certain particular cases
(associated with the root systems of the classical Lie groupsBN , CN andDN ) is also discussed.

1. Introduction

During the last few years a lot of work has been devoted to the study of the Calogero–
Sutherland Hamiltonian because of its relation to fractional statistics in one dimension, to
the random matrix theory, etc. The model originally proposed by Sutherland [1] describes
particles moving on a circle, with an interaction proportional to the inverse square of the
chord distance and with periodic boundary conditions. This Hamiltonian will be referred
to as the periodic Calogero–Sutherland Hamiltonian. This model is exactly solvable and its
wavefunctions, the Jack polynomials, have been extensively studied [2, 3].

A new family of models of the Calogero–Sutherland type was proposed in [4], describing
particles on a semicircle, interacting with one another and with the boundaries. We call them
Calogero–Sutherland models with reflections; several types are associated with several types
of root systems of classical Lie algebras. These models are also exactly solvable. Some
properties of their polynomial eigenfunction, the Macdonald polynomials, were studied in
[5]. The spectrum and the eigenfunctions of these Hamiltonians were used in [6] in order
to obtain the exact solution of a class of long-range interacting spin chains with boundaries.

These models are remarkably similar to the periodic one, but there are additional
complications related to the loss of the translational invariance. One of the key properties of
the periodic model is the duality which permits relating the wavefunctions corresponding to
two different values of the coupling constant [2, 3, 7]. In this paper we prove the existence
of a similar duality property for the Calogero–Sutherland Hamiltonian with reflections. The
initial motivation of this work was in obtaining the correlation functions of the Calogero–
Sutherland models with reflections.

The plan of the paper is the following: the next section is devoted to the presentation
of the model, in section 3 we present a method for deriving the polynomial eigenfunctions
and in the section 4 we emphasize the connection between the eigenfunctions of these
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Hamiltonians and the Jacobi functions. Section 5 is devoted to the proof of the duality
property. In section 6 we use this property in order to derive an expansion formula for the
kernel which intertwines between the two dual models.

2. The model

Following [4, 5], a Hamiltonian of Calogero–Sutherland (CS) type can be defined for each
root system of a classical Lie algebra. LetV denote onN -dimensional vector space with
an orthonormal basis{e1, . . . , eN } and letR = {α} be a root system inV , with R+ the set
of positive roots. Letθ denote the vector(θ1, . . . , θN) andθ · α its scalar product with the
vectorα. The generalized CS Hamiltonian is

H = −
N∑
i=1

∂2

∂θ2
i

+
∑
α∈R+

gα

sin2(θ · α/2) (2.1)

wheregα is constant on each orbit of the Weyl group, i.e. it has the same value for the
roots of the same length.

The periodic model [1] corresponds with the root system of typeAN−1. It describes
interacting particles on a circle, with the positions specified by anglesθi ranging from 0 to
2π and with periodic boundary conditions.

The reflection models are associated with the four infinite series of root systemsDN ,
BN , CN andBCN . A list of the main characteristics of these series of root systems is given
in appendix A.

The most general Hamiltonian is the one associated with thenon-reduced(i.e. that
includes roots which are proportional, asα and 2α) BCN root system; the others can be
obtained from it by setting the coupling constants to some special values.

The BCN Hamiltonian describesN particles on a semicircle, with positions specified
by the angles 06 θ1, . . . , θN 6 π :

H = −
N∑
i=1

∂2

∂θ2
i

+ β(β − 1)
N∑

i 6=j=1

[
sin−2

(
θi − θj

2

)
+ sin−2

(
θi + θj

2

)]

+
N∑
i=1

[
c1(2c2+ c1− 1) sin−2 θi

2
+ 4c2(c2− 1) sin−2 θi

]
. (2.2)

This Hamiltonian has three independent coupling constantsβ, c1 and c2, corresponding to
the roots of length 2, 1 and 4, respectively.

Compared with the periodic version, the potential part of this Hamiltonian contains a
new two-body term corresponding to the interaction between particlei and the ‘image’
of the particlej through the reflectionθj → −θj . Using the relation sin−2 x + cos−2 x =
4 sin−2(2x), the one-body part of the potential can be separated into couplings of the particles
to the two boundariesθ = 0, π , with independent coupling constants related toc1, c2.

The other cases are obtained by setting to zero one (or both) of the coupling constants
c1, c2:

BN : c2 = 0 CN : c1 = 0 DN : c1 = c2 = 0. (2.3)

The symmetry to be imposed to the wavefunctions depends on the root system we consider.
The ground-state wavefunction of this Hamiltonian is [6]

1(θ) =
N∏
i=1

[
sinc1

θi

2
sinc2 θi

]∏
i<j

[
sinβ

(
θi − θj

2

)
sinβ

(
θi + θj

2

)]
. (2.4)
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Note that this ground state is well defined forβ, c1, c2 > −1/2.
It is convenient to define a gauge transformed Hamiltonian byH = 1(θ)−1H1(θ)−E0,

with E0 =
∑N

i=1(β(N − i)+ c1/2+ c2)
2 the ground-state energy ofH . We obtain

H = −
N∑
i=1

∂2
i − β

∑
i 6=j

[
ctg

(
θi − θj

2

)
+ ctg

(
θi + θj

2

)]
∂i−

N∑
i=1

[
c1 ctg

θi

2
+ 2c2 ctgθi

]
∂i .

(2.5)

Let us mention that higher-order conserved quantities exist for this model. They are
generated by the quantum determinant of the monodromy matrix obeying the reflection
equation [8]. Their construction parallels that of the conserved quantities of the periodic
model [9]. The monodromy matrix for the spin chains associated with this model was
constructed in [6].

3. Symmetry of the eigenstates ofH

In this section we present the basis of the polynomials in the variablesz
±1/2
j = e±iθj /2

in which the HamiltonianH is triangular [5]. This basis can serve for determining the
eigenvalues and for finding the eigenfunctions.

We emphasize that different symmetries can be assigned to these eigenfunctions,
depending on the values of the coupling constantsc1, c2. These symmetries can be best
understood in terms of root systems [5], as invariances under transformations defined by the
Weyl group. The wavefunctions are naturally indexed by the dominant weights of the root
systemsBCN (orDN , BN , CN for the particular values of the coupling constants mentioned
in (2.3)).

We start this section with a brief review (for more details see, for example, [10]) of
some of the notions related to the root systems.

Let V be anN -dimensional vector space with an orthonormal basis{e1, . . . , eN } andα
a root system inV . Let X be the reunion of hyperplanes orthogonal to one of the rootsα.
A chamber is a connected component ofV −X. Let (α1, . . . , αl) be the basis corresponding
to a chamberC ((αi, x) > 0 for x ∈ C) andαVi = 2αi/(αi, αi). The vectorsω̄i with the
property (αVi , ω̄j ) = δij are called the fundamental weights. The dominant weights are
defined as being linear combinations of the fundamental weights with non-negative integer
coefficients,λ = ∑l

i=1 kiω̄i . When l = N , as in the cases considered here, the dominant
weights can equally be characterized by the set of coordinatesλ1, . . . , λN of λ with respect
to the the orthogonal systeme1, . . . , eN ; λi = (λ, ei).

We note that the Weyl group is the group generated by the reflections with respect to
the hyperplanes orthogonal to the roots.

The main characteristics of the root systems we consider, as well as the allowed values
of λ1, . . . , λN , are presented in appendix A.

A partial ordering can be defined for the dominant weights.λ > µ if λ, µ are dominant
weights andµ = λ− α with α a positive root.

Consider now the HamiltonianH written in the variablesz = eiθ

H =
N∑
i=1

(zi∂zi )
2+ β

∑
i 6=j
(wij + w̄ij )zi∂zi +

N∑
i=1

(c1wi0+ 2c2w̄ii)zi∂zi (3.1)

with wij = (zi + zj )/(zi − zj ), w̄ij = (zi + z−1
j )/(zi − z−1

j ) andwi0 = (zi + 1)/(zi − 1).

It is possible to construct eigenfunctions ofH, polynomial in the variablesz±1/2
j = e±iθj /2
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and symmetric under the transformations defined by the Weyl group. To achieve that, start
from the monomials

z
λ1
1 . . . z

λN
N

and define the symmetrized monomials

mλ =
∑
s∈W

z
s(λ1)

1 . . . z
s(λN )
N (3.2)

where the sum is over the elements of the Weyl groupW , each distinct monomial occurring
only once, andλ denotes a dominant weight of the root system under consideration. The
HamiltonianH is triangular on the basis of symmetrized monomialsmλ

Hmλ = Eλmλ +
∑
µ<λ

cλ,µmµ.

One can check that there are no poles generated by thewij factors. The symmetry ofmλ
ensures that these poles disappear and lower order monomials are generated. The typical
example is

z1+ z2

z1− z2
(z
n1
1 z

n2
2 − zn2

1 z
n1
2 ) = zn1

1 z
n2
2 + 2zn1−1

1 z
n2+1
2 + · · · + zn2

1 z
n1
2

wheren1 − n2 is a positive integer. The terms containingwij , w̄ij , wi0 and w̄ii generate a
lower-order symmetric monomial of the typemλ−α with α equal toei − ej , ei + ej , ei and
2ei , respectively.

As H is triangular, the eigenvaluesEλ are easily derived

Eλ =
N∑
i=1

λi(λi + 2β(N − i)+ c1+ 2c2). (3.3)

The restrictions on the values of the momentaλi , coming from the fact thatλ is a dominant
weight, are discussed in the appendices.

4. Jacobi polynomials

The polynomial eigenfunction ofH with BCN symmetry already considered are also
symmetric polynomials in the variablesxj = cosθj . They are multivariate generalizations
of the Jacobi polynomials [11].

Let us start with the simplest casesβ = 0 or 1, when the Hamiltonian (2.2)
decouples to a sum of one-particle termsH1. After a gauge transformϕ(θ)H1ϕ

−1(θ),
with ϕ(θ) = sinc1(θ/2) sinc2 θ , we obtain the one-particle Hamiltonian

H1 = − d2

dθ2
−
(
c1 ctg

θ

2
+ 2c2 ctgθ

)
d

dθ
. (4.1)

The eigenfunctions ofH1 satisfy the hypergeometric differential equation in the variable
x = cosθ

(1− x2)
d2y

dx2
− [c1+ (c1+ 2c2+ 1)x]

dy

dx
+ n(n+ c1+ 2c2)y = 0. (4.2)

The Jacobi polynomialsP (a,b)n (x), with

a = c1+ c2− 1/2 b = c2− 1/2 (4.3)

andn a non-negative integer, are solutions of this equation. We will usea, b to index the
wavefunctions and continue to usec1, c2 as coupling constants in the Hamiltonian.



Properties of the Calogero–Sutherland model with reflections 4219

The Jacobi polynomials form a basis for the functions defined on the interval [−1, 1],
orthogonal with respect to the scalar product

〈f (x), g(x)〉 =
∫ 1

−1
dx(1− x)a−b(1− x2)bf (x)g(x). (4.4)

The second (non-polynomial) solution of (4.2) is given by the Jacobi’s function of the second
kind, Qa,b

n (x). For a detailed description of the Jacobi polynomials and Jacobi functions
see [12]. We retain the following expansion property

∞∑
n=0

{h(a,b)n }−1P (a,b)n (x)Q(a,b)
n (y) = 1

2

(y − 1)−a+b(y2− 1)−b

y − x (4.5)

whereh(a,b)n is the norm of the Jacobi polynomials with respect to the scalar product (4.4)
andx = cosθ andy = cosφ.

The Jacobi polynomials play the same role for theBCN model as the power functionszn

do for the periodic model. In particular, bosonic (fermionic) wavefunctions can be obtained
by symmetrization (antisymmetrization) of products of Jacobi polynomials

J (a,b)λ1,...λN
(cosθ1, . . . , cosθN ; 0) = dλ(0, a, b)

∑
σ∈SN

P
(a,b)
λ1

(cosθσ1) . . . P
(a,b)
λN

(cosθσN )

(4.6)

and respectively

J (a,b)λ1,...λN
(cosθ1, . . . , cosθN ; 1) = dλ(1, a, b)

det(P (a,b)λi+N−i (cosθj ))∏
i<j sin((θi − θj )/2) sin((θi + θj )/2) (4.7)

wheredλ(β, a, b) are normalization constants to be fixed later.
The functions defined by the relation (4.7) are analogous to the Schur polynomials. In

the particular casec1 = 0, c2 = 1 (or a = b = 1/2) they are, up to a normalization constant,
the characters of the symplectic group [13].

For a generic value ofβ, Lassalle [11] showed that there are eigenfunctions ofH,
uniques up to a normalization, which have a triangular expansion on the Jack polynomials

J (a,b)λ (x.;β) =
∑
µ⊆λ

cλµJµ(x.;β) (4.8)

whereµ ⊆ λ meansµi 6 λi for all i. They were named generalized Jacobi polynomials.
We choose their normalization such thatcλλ = 1. Here we have used a result of [14],
section 3, to relate the Jack polynomials in the variablesx = cosθ to the ones in the
variables sin2 θ/2= (1− x)/2 used in [11].

A method to express these polynomials in terms of Jack polynomials (associated with
the AN−1 root systems) was also proposed in [15], using a bosonic representation of the
Calogero–Sutherland Hamiltonian.

5. Duality

It was proven by Macdonald [2] and by Gaudin [7] that the eigenfunctions of the periodic
model for two different coupling constants (β and 1/β) are in correspondence. We show
that a similar property holds for theBCN model. Since the method of [2] is difficult to
parallel in theBCN case, we employ the method proposed by Gaudin.
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Consider two sets of independent variablesθ. = {θi, i = 1, N} and φ. = {φm,m =
1,M} and the kernel

KNM(θ.;φ.) =
M∏
m=1

N∏
i=1

sin

(
θi − φm

2

)
sin

(
θi + φm

2

)
. (5.1)

This kernel intertwines between the HamiltoniansHN(θ.;β, c1, c2) andHM (φ.; 1/β, c̃1, c̃2)

− β−1/2[HN(θ.;β, c1, c2)− βMN(2N − 1)/2−MN(c1+ 2c2)]KNM(θ.;φ.)
= β1/2[HM(φ.; 1/β, c̃1, c̃2)− β−1NM(2M − 1)/2

−MN(c̃1+ 2c̃2)]KNM(θ.;φ.) (5.2)

where the dual values̃c1 and c̃2 are defined by

c̃1 = c1/β c̃2 = (2c2− β + 1)/2β. (5.3)

The proof uses repeatedly the identity ctgx ctgy + ctgy ctgz + ctgz ctgx = 1 for angles
satisfyingx + y + z = 0.

Let us take firstM = 1 and evaluate the action of the kinetic operator:∂2
θ =

∑
i ∂

2
i on

KN = KN1

∂iKN = 1

2

[
ctg

(
θi − φ

2

)
+ ctg

(
θi + φ

2

)]
KN (5.4)

∂2
θ KN =

[
−N

2
+ 1

2

∑
i

ctg

(
θi − φ

2

)
ctg

(
θi + φ

2

)]
KN. (5.5)

Using the property ctgx ctgy + ctgy ctgz + ctgz ctgx = 1 for the anglesx = (θi − φ)/2,
y = −(θi + φ)/2 andz = φ, we obtain

ctg

(
θi − φ

2

)
ctg

(
θi + φ

2

)
KN = (−2 ctgφ∂φ − 1)KN (5.6)

so the kinetic term is

∂2
θ KN = −(N + ctgφ∂φ)KN. (5.7)

The one-body part of the potential in the variablesθ can be transformed into a derivative
acting on the variableφ

−
∑
i

(
c1 ctg

θi

2
+ 2c2 ctgθi

)
∂iKN =

[(
c1 ctg

φ

2
+ 2c2 ctgφ

)
∂φ + c1+ 2c2

]
KN. (5.8)

The two-body part of the potential in the variablesθ reconstitutes the kinetic part of the
Hamiltonian in the variableφ

− β
∑
i<j

[
ctg

(
θi − θj

2

)
(∂θi − ∂θj )+ ctg

(
θi + θj

2

)
(∂θi + ∂θj )

]
KN

= βN(N − 1)KN − β
2

∑
i<j

(
Ci+Cj+ + Ci−Cj− − Ci−Cj+ − Ci+Cj−

)
KN

= βN(N − 1)KN + β
4

[(∑
i

(Ci− − Ci+)
)2

−
∑
i

(Ci− − Ci+)2
]
KN

= β
[
N

(
N − 1

2

)
+ ∂2

φ + 1
2 ctg

(
θi − φ

2

)
ctg

(
θi + φ

2

)]
KN (5.9)
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whereCi± = ctg((θi ± φ)/2). Using (5.7), (5.8) and (5.9) we obtain

H(θ;β, c1, c2)KN = β
[
∂2
φ +

(
c̃1 ctg

φ

2
+ 2c̃2 ctgφ

)
∂φ

]
KN

+(βN2+ (c1+ 2c2− β + 1)N)KN. (5.10)

The right-hand side of this equation is, up to a constant, the Hamiltonian for one particle
of coordinateφ, with the new coupling constants̃c1 = c1/β and c̃2 = (2c2− β + 1)/2β.

Let us now takeM variables φ, M > 1 and KNM(θ1, . . . , θN ;φ1, . . . , φM) =∏M
i=1KN(θ1, . . . , θN ;φi). The potential part of the HamiltonianH(θ;β, c1, c2) is a first-

order derivative, so its action on the kernelKNM(φ1, . . . , φM) is additive. The second-order
derivatives in the kinetic energy operator generate crossed terms which correspond to the
two-body terms of the Hamiltonian in the variablesφ1, . . . , φM :

∂2
θ KNM =

N∑
i=1

[
− M

2
+ 1

4

( M∑
m=1

(Cim− + Cim+)
)2

− 1

4

M∑
m=1

(C2
im− + C2

im+)
]
KNM

=
[
− NM

2
+ 1

2

∑
i,m

ctg
θi − φm

2
ctg

θi + φm
2

+
∑
m6=n

(
ctg

φm − φn
2

+ ctg
φm + φn

2

)
∂φm

]
KNM. (5.11)

Here we have used a calculation of the same type as in (5.9), but involving the indexm of
Cim± = ctg((θi ± φm)/2) instead of the indexi. The last term in (5.11) is proportional to
the two-body interaction in variablesφ.

The full result is obtained by collecting the partial results in (5.9), (5.6) (summed over
theM variablesφm) and (5.11):

HN(θ.;β, c1, c2)KNM(θ.;φ.) = [−βHM(φ.; 1/β, c̃1, c̃2)+ βMN(N − 1)

+NM2+MN(c1+ 2c2)]KNM(θ.;φ.). (5.12)

This is equivalent to the result announced in equation (5.2). In the next section, this property
will be used in order to obtain the expansion ofK(θ.;φ.) in terms of the eigenfunctions of
HN(θ.;β, c1, c2) andHM(φ.; 1/β, c̃1, c̃2).

Using a similar method, we can derive another result whose periodic analogue is
well known [2, 3]. It concerns the expansion ofK−β(θ.;φ.) on the eigenfunctions of
H(θ;β, c1, c2)

[HN(θ.;β, c1, c2)−HM(φ.;β,−c1,−c2+ β)]K−βNM(θ.;φ.)
= − [β2MN(M −N + 1)− βMN(c1+ 2c2)]K

−β
NM(θ.;φ.). (5.13)

We can further transform this expression by noting the following property

ψ−1(φ.)HM(φ.;β, c1, c2)ψ(φ.) = HM(φ.;β,−c1,−c2+ 1)− C1 (5.14)

whereψ(φ.) =∏M
i=1(sin−2c1(φi/2) sin−2c2+1 φi) andC1 = M(c1+2c2−1)(β(M −1)+1).

This allows us to rewrite (5.13) as

[HN(θ.;β, c1, c2)−HM(φ.;β, c1, c2− β + 1)+ C2]ψ(φ.)K−βNM(θ.;φ.) = 0 (5.15)

where the constant

C2 = β2MN(M −N + 1)− (c1+ 2c2)βMN +M(c1+ 2c2− 2β + 1)(β(M − 1)+ 1).
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6. Expansion formula for KNM(θ.;φ.)

The kernel (5.1) is a polynomial in both sets of variablesyi = cosθi andwm = cosφm

KNM(θ.;φ.) =
M∏
m=1

N∏
i=1

sin

(
θi − φm

2

)
sin

(
θi + φm

2

)
= 2−NM

M∏
m=1

N∏
i=1

(yi − wm). (6.1)

It plays the role of a generating function for the generalized Jacobi polynomials. Using
equation (5.2) we prove the following property, similar to the dual expansion of the Jack
polynomials [2, 3]

KNM(θ.;φ.) = 2−NM
∑
λ

(−1)|λ̃|J (a,b)λ (y.;β)J (ã,b̃)
λ̃

(w.; 1/β) (6.2)

where

a = c1+ c2− 1/2 b = c2− 1/2 ã = (a − β + 1)/β b̃ = (b − β + 1)/β

and the symbol̃λ denotes the partition with parts̃λk = N − λ′M−k+1, whereλ′ denotes the
partition conjugate toλ.

Let us prove this relation. CallAλ(w.;β, a, b) the coefficients of the expansion of
KNM(θ.;φ.) on eigenfunctions ofHN(θ.;β, c1, c2),

KNM(θ.;φ.) = 2−NM
∑
λ

Aλ(w.;β, a, b)J (a,b)λ (y.;β). (6.3)

It follows from equation (5.2) that they are eigenfunctions ofHM(φ.; 1/β, c̃1, c̃2),

corresponding to the same eigenvalue asJ (ã,b̃)
λ̃

(w.; 1/β). As the energy levels can
be degenerate, we still have to prove that theseAλ(w.;β, a, b) are proportional to

J (ã,b̃)
λ̃

(w.; 1/β) and to determine the proportionality constant. To prove this one can use the
duality property of the Jack polynomial and exploit their relation to the generalized Jacobi
polynomials (4.8).

Expression (6.1) can be expanded on the Jack polynomials [3]

KNM(θ.;φ.) = 2−NM
∑
λ

(−1)|λ̃|Jλ(y.;β)Jλ̃(w.; 1/β) (6.4)

where we have used the relation between the Jack polynomials with argumentsw and with
argumentsw−1

Jλ̃(w.; 1/β) =
M∏
m=1

wNmJλ′(w
−1.; 1/β).

This property can easily be verified using the triangularity ofJλ(y;β) in the basis of
symmetric monomialsmλ and the fact that boths sides are eigenfunctions of the periodic
Calogero–Sutherland corresponding to the same eigenvalue.

In equation (6.3) we can expand the generalized Jacobi polynomials on the Jack
polynomials, to obtain

KNM(θ.;φ.) = 2−NM
∑
λ

Aλ(w.;β, a, b)
∑
µ⊆λ

cλ,µJµ(y.;β) (6.5)

whereµ ⊆ λ meansµi 6 λi for all i. From the relation (6.4) and the orthogonality of Jack
polynomials, we have

Jµ̃(w.; 1/β) = (−1)|µ|
∑
λ⊆µ

cλµAλ(w.;β, a, b). (6.6)
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Inverting this expansion we obtain

Aλ(w.;β, a, b) =
∑
µ̃⊆λ̃

(−1)|µ|c′λµJµ̃(w.; 1/β) (6.7)

with c′λλ = 1. As the generalized Jacobi polynomialsJ (ã,b̃)
λ̃

(w.; 1/β) are uniquely defined
as being eigenfunctions of the HamiltonianHM(φ.; 1/β, c̃1, c̃2) which is triangular in the
basis of Jack polynomials and with the coefficientcλλ = 1, we conclude that

Aλ(w.;β, a, b) = (−1)|λ̃|J (ã,b̃)
λ̃

(w.; 1/β)
which proves (6.2). Note that the expansion in (6.2) contains just a finite number of terms,
corresponding to partitionsλ included in the partitionMN .

The equations (5.13) and (5.15) can also be related to expansion relations for
K
−β
NM(θ.;φ.) and ψ(φ.)K

−β
NM(θ.;φ.), probably involving generalized hypergeometric

functions which are not polynomials. The simplest case of (5.15) isβ = N = M = 1, when
the associate expansion relation is the expansion property of the Jacobi functions (4.5).

Acknowledgments

I wish to thank D Bernard, M Gaudin, F Lesage and V Pasquier for many discussions and
for reading the manuscript.

Appendix A. Root systems

The main characteristics of the root systemsDN , BN , CN andBCN are the following.
(i) TheDN root system.The positive roots are

ei − ej , ei + ej 16 i < j 6 N.

The fundamental weights are

ω̄i = e1+ · · · + ei 16 i 6 N − 2

ω̄N−1 = 1
2(e1+ · · · + eN−2+ eN−2− eN)

ω̄N = 1
2(e1+ · · · + eN−2+ eN−2+ eN).

The dominant weights ofDN are indexed byλ1 > · · · > |λN | > 0 all integers or all half-
integers.λN can be positive or negative. The action of the Weyl group onλi is generated
by the permutationssijλi = λj and bys̄ij λi = −λj .

(ii) TheCN root system.The positive roots are

ei − ej , ei + ej 16 i < j 6 N 2ei (16 i 6 N).

The fundamental weights are

ω̄i = e1+ · · · + ei 16 i 6 N

and the dominant weights are characterized byλ1 > · · · > λN > 0 a set of positive (or
zero) integers. The Weyl group contains, beside the permutationssij and s̄ij , the reflections
si(λi) = −λi .

(iii) TheBN root system.The positive roots are

ei − ej , ei + ej 16 i < j 6 N ei 16 i 6 N.
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The fundamental weights are

ω̄i = e1+ · · · + ei 16 i 6 N − 1

ω̄N = 1
2(e1+ · · · + eN−1+ eN)

and the dominant weights are characterized byλ1 > · · · > λN > 0 all integers or all
half-integers. The Weyl group is that ofCN .

(iv) TheBCN root system.Its positive roots are

ei − ej , ei + ej 16 i < j 6 N ei, 2ei 16 i 6 N.
The Weyl group and the dominant weights are those ofCN .

Appendix B. Some examples of eigenfunctions

In this appendix we give as an example some eigenvectors ofH atN = 2. These examples
illustrate the ‘selection rules’ of the previous appendix, imposed by the different symmetries
on the momentaλi . The following remarks are valid for anyN :
—polynomials labelled by half-integer weights (allλi ∈ Z+ 1/2) are allowed only for the
BN andDN cases
—for DN , λN 6= 0, the levels are doubly degenerate,Eλ1,...,λN−1,λN = Eλ1,...,λN−1,−λN .

BC2

J1,0 = m1,0+ 4c1

1+ 2β + c1+ 2c2
m0,0

J1,1 = m1,1+ 2c1

1+ c1+ 2c2
m1,0+ 4c2

1 + 4β(1+ c1+ 2c2)

(1+ β + c1+ 2c2)(1+ c1+ 2c2)
m0,0 (B1)

C2(c1 = 0)

P1,0 = m1,0

P1,1 = m1,1+ 4c2
1 + 4β(1+ 2c2)

(1+ β + 2c2)(1+ 2c2)
m0,0 (B2)

B2(c2 = 0)

P1/2,1/2 = m1/2,1/2

P1,0 = m1,0+ 4c1

1+ 2β + c1
m0,0

P3/2,1/2 = m3/2,1/2+ 4β + 6c1

2+ c1+ 2β
m1/2,1/2 (B3)

D2(c1 = c2 = 0)

P1/2,±1/2 = m1/2,±1/2

P1,0 = m1,0

P1,±1 = m1,±1+ 2β

β + 1
m0,0

P3/2,±1/2 = m3/2,±1/2+ 2β

β + 1
m1/2,∓1/2. (B4)

The symmetric monomialsmλ1,λ2 associated with each type of symmetry were defined in
(3.2).

Unlike in the case of Jack polynomials, there is anN -dependence of the coefficients of
mλ.
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